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Abstract

Wave propagation is studied to characterize an oil reservoir provided reservoir rocks could be considered a general
anisotropic poroelastic solid saturated by a viscous fluid with flow controlled by the anisotropic permeability of the
porous solid. Biot’s theory is used to derive a modified Christoffel equation for the propagation of plane harmonic
waves in such a medium. This equation is solved further to get a biquadratic equation whose roots represent the
complex velocities of four attenuating quasi-waves in such a medium. These complex velocities define the phase
velocities of propagation and quality factors of attenuation of all the quasi-waves propagating along a given phase
direction in three-dimensional space. The variations of phase velocities and attenuation factors with the direction of
phase propagation are computed, for a realistic numerical model. Propagation regimes for anisotropic/isotropic
poroelastic media with isotropic/anisotropic permeability are obtained as reduced cases.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The study of mechanical behaviour of porous media is of special importance in the seismic exploration,
for the closer description of physical phenomena around the oil reservoirs. A reservoir is, no doubt, a fluid-
saturated porous solid medium pervaded by aligned cracks. In the presence of aligned cracks, an elastic
medium behaves anisotropic to wave propagation (Crampin, 1981). In general, the seismic anisotropy is
caused by the lithological and crystal alignments, stress induced effects, aligned cracks and fluid-filled pores.
The absence of point symmetry of pores may cause the anisotropy of arbitrary symmetry. Inherent cracks
(particularly microcracks) and pores in a crystal rock are modified and aligned by the changes in stress-
field of the rock and pore fluid pressure. The distribution of stress-aligned fluid-filled microcracks and
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preferentially oriented pore space is known as extensive dilatancy anisotropy (EDA) and has been recog-
nised (Crampin, 1994) throughout much of the crust. Crampin (1987) discussed the geological and
industrial implications of EDA. In exploration studies (Helbig, 1984; Leary and Henyey, 1985; Kerner
et al., 1989; Corrigan, 1989; and many others), the velocity anisotropy measured from travel times has
suggested the presence of significant anisotropy in sedimentary basins.

The porosity and permeability are two fundamental parameters which are economically important in oil
production. Whereas, porosity is the most important geometrical property, the permeability is an equally
important physical property of a porous medium. Permeability measures the ability of a porous medium to
conduct fluid flow in its pores. Reservoir rocks can exhibit a strong permeability anisotropy. There may or
may not be some correlation between elastic anisotropy and permeability (or hydraulic) anisotropy
(Rasolofosaon and Zinszner, 2002). To infer hydraulic transport properties of reservoir rocks from seismic
data is a difficult but important aspect of exploration studies.

This paper provides a mathematical model to study the phase propagation velocities and attenuations of
four quasi-waves in reservoir rocks. Their variations with phase direction are studied numerically.

2. Anisotropic poroelasticity

Following Biot (1955, 1956), the governing equations for a fluid-saturated porous media, in the absence
of body forces, are

Gij; = puil; + p12Us + by(it; — Uy),

i palic+ byl = )
0 = ppili + ppU; — by(i; — Uj).

In these equations, u; and U; are the components of the average displacements for the solid and fluid phases,
respectively. The dot notation is used to represent differentiation with respect to time. Indices can take the
values 1-3. Summation convention is valid for repeated indices. The comma (,) before an index represents
partial space differentiation. p,,, p,, and p,, are the dynamical constants depending upon the porosity of
solid, fluid-solid coupling and densities of solid particles and interstitial fluid. Flow-resistance symmetric
matrix {b;;} steers the effects of frequency (), fluid viscosity (x), solid—matrix permeability (y) and porosity
(f) on the wave propagation. Following Biot (1956),

b=L2r200, 2)
X0

where, y, is norm of permeability tensor. y, is a symmetric matrix of order 3 and represents normalized
anisotropic permeability tensor. This expression of b is valid, only, for the low-frequency range, where the
flow in the pores is of Poiseuille type. For higher frequencies, a correction factor is applied to the viscosity,

i, replacing it by uF (). With @ denoting the linear dimension of pores, the x = a,/wp,/u. F(x), a complex
function of frequency w, is, then, defined as follows:
When k < 1 (i.e., highly viscous fluid and/or smaller pores),

F(x) = [1+&*/1152 + o(k%)] + 1[x* (1 — x*/1440) /24 + o(x®)]

and, when x > 1 (i.e., low-viscosity fluid and/or wider pores),

2 1 1 1 15v2 1
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For an anisotropic porous material, the constitutive equations for stresses in the solid phase (i.e. ¢;;) and
fluid (i.e. o) are
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Oij = CijkiUg, + mijUk,ka (3)
0 = mju;; +RUk’k.
The coefficients c¢;;, m; and R are the material constants of a linear porous material. The assumptions
Cijit = Cuij = Cjiw, My = my; and strain-energy considerations reduce the number of these material constants
to be at the most 28, for general anisotropy.
To seek the harmonic solution of (1), for the propagation of plane waves, write

u; = S;exp{io(px, — 1)},
U, = Fexpl{io(p — 1)} (j=1,2,3),

where, w is angular frequency and (py, p», p3) is slowness vector. In terms of phase velocity v, the slowness is
{p1,p2, 3} = {m,m,n3}/v, where n; denotes the components of a unit vector normal to wave surface.
Define row matrix N = (ny,n,n3) to represent the direction of phase propagation. Substituting (2) in (1)
and, then, using (3), yields a system of six homogeneous equations in Si,S,,Ss, F, F>, F5. Non-trivial
solution of this system of equations defines a modified Christoffel equation for the wave propagation in an
anisotropic poroelastic medium. Eliminating F; (j = 1,2, 3), the Christoffel equation is reduced to a system
of three homogeneous equations, given by

)

The W; are elements of a square matrix of order 3, which is defined as
X di\ 1 [Xs—(Xo—Xyd/dy)d, [dylh + X4
= (21— Z+ (X -X 2 ) —
W (do It d>h+ +( 2 1d0>d0+ h(doh + dv) ) (6)

where, I is identity matrix of order 3 and dissipation matrix d = zm';zz. The variable & = p,v*/R and

ri; = p1;/pan (j = 1,2). Other variables, in (6), are expressed as follows:
dy = det(d + 1),

d1 = dlzzng + 2d12<d33 -+ 1)n1n2 — (d“ + 1)(d22 + l)l’l% — 2d12d23n1n3 + d123l’l§ + 2d13(d22 + 1)1’!1]13
— (d]l + 1)(d33 + 1)1’1% — 2d13d23n1n2 + d223nf —+ 2d23(d11 + 1)112713 — (d22 =+ 1)(6{3; + l)l’l% — 2d12d13n2n3.

X; = r,® — ri2(dP + &d) + dod,

X, = 7T — rp(dl" + T'd + E'N® + ®N'E) + (dI'd + EN&d + dON'E),
X; = —rp(ENT + I'N'E) + (dI'N'E + E'NI'd + ENON'E),

X, = ENI'NE,

()

where, matrix @ = adj(d + I) and elements of symmetric matrix I" are defined as
Fll = 2d23n2n3 — (d22 + l)l’lg — (d33 + l)ng and F23 = dz37l% - (dll + 1)712113 - d21n3n1 — dglnzl’ll.

The other elements of I' are obtained in cyclic order. The matrix Z in (6) is defined as follows:
Consider a general anisotropic poroelastic medium with elastic constants c;;,; of the solid matrix rep-
resented by two-suffix notation, c;;. Define, following Sharma (2002),

o= NA]N/, ﬁ = NAzN,7 Y= 1‘A31\I,7

— U _ ! _ ! (8)
5§ =NAN, 15 =NAsN, (=NAN,

where N’ denotes the transpose of row matrix N. A;—Ag are square matrices of order 3. For general
anisotropy, these are defined as follows:
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A = {0117016,015;61167616670565015,615675155}, Ay = {%6,6126,6146;6126,612276124;61467612476144},
Az = {a55,a45,a35;a45,a44,a34;a35,a34,a33}, Ay = {am,alz,014;6166761267046;01567012570145}, (9)
As = {6115,a14,a13;6156,a46,a36;6155,a45,a35}, Ag = {asé,046,036;025,612476123;6145,6144,6134},
where a;; = ¢;;/R and symmetric, square matrix
Z:{‘Xaé”/]; 5aﬁvc; 71,57"/} (10)

The row matrix E, in (7), is given by E; = %n(,-m,-j (i =1, 2, 3). The system of equation (5) is possible for all
values of 4 other than 0 and —d /dy.

3. Christoffel equation

For the non-trivial solution of the system of equation (5), the determinant of matrix # must vanish. This
gives a biquadratic equation in % (= py,v*/R), given by

W — el 4+ eh* —csh+ ¢y = 0. (11)

The coefficients ¢’s in (11) are complex and this implies that four roots of this equation may be complex.
Therefore, the four waves propagating in such a medium are attenuating waves. The same directions of
propagation and attenuation vectors of these waves, make them homogeneous waves. Let #; (j =1, 2, 3, 4),
denotes the roots of this equation. The complex phase velocities of the four waves, given by v; =
V' (Rh;/ps) (G =1, 2, 3, 4), will be varying with the direction of phase propagation. These waves are called
quasi-waves because polarizations may not be along the dynamic axes. Analogous to the propagation in an
isotropic poroelastic medium (Section 4), these waves, represented by j =1, 2, 3, 4, may be called the
gP1-,qP2-,¢S1- and gS2-waves, respectively. The complex velocity of a quasi-wave j, i.e., v; = vg + 17y,
defines the phase propagation velocity ¥; = (v + v7)/vz and attenuation quality factor Q;' = —2v;/vg for
the corresponding wave. The coefficients in Eq. (11) are expressed as follows:

o =—(dhL+dT)/(dT), c=Ts+d+dD)/(dh),

3 =—(Te+dTh+dT)/(dTh), c1=(T+dT)/(dTh), (12)
where

Ty = [AAA], T, = [AAB]+ [ABA] + [BAA], T = [ABB] + [BAB| + [BBA|, T, = [BBB],

Ts = [AAC] + [ACA] + [CAA],

T, = [AAD] + [ABC] + [ACB] + [ADA] + [BAC] + [BCA] + [CAB] + [CBA] + [DAA],

T; = [ABD] + [ADB] + [BAD] + [BBC] + [BCB] + [BDA] + [CBB] + [DAB] + [DBA].

A, B, C,D, the square matrices of order 3, are defined by

X, d\ 1
A=——ryl—-d, B=(X,-X,— |—+7Z
4 1 ; ( 2 ldo>do+ )

d\ d
=X;—- (X, —-X;— |]—, D=X.,
C 3 (2 1d0)d0, 4

The symbol [ABC] defines the determinant of a matrix {41,412, 413; Ba1, B, Bas; Ci1,Cs, Ci3}.
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The four roots of Eq. (11) are written as
hi =05(-G—L+4,), h=05-G—-L—4),
hy =05(-G+L+4,), hy=05(-G+L— 4),

where

M= (GHLP —4(H+ M), 4= \[(G-LY —4(H —M), G=—-05¢, M=+/H —c,
L = (0.5¢s + GH)/M, (L:\/G2—02+2H ifM:o)

and H is a root of the cubic equation

SH? — 4cyH? + 2(c1c3 — 4eq)H + cq(dey — c%) — c§ =0.

4. Reduced cases

Isotropic permeability is represented by d;; = d,0;;. It, further, yields dy = (d; + 1)3,d1 = —(ds+ 1)2,
®=(d;+ 1) I,I = (d;+ 1)(N'N = I). Vanishing of D yields the reduced terms Ty =[ABC]+ [ACB]
+[BAC]+[BCA] + [CABJ] +[CBA], and 7; = [BBC] + [BCB] + [CBB|. The elastic isotropy of porous solid is
represented four elastic constants ay;,ae,Q,R and m; = Q0d;;. The matrix Z, given by (10), reduces to
Z=ael+ (a1 —ae)N'N. The corresponding changes in A,B,C,D modify the coefficients ¢; and then the
roots ;.

The above given reductions enable to study the propagation regimes in the following media:

(1) anisotropic poroelastic medium with isotropic permeability,

(ii) isotropic poroelastic medium with anisotropic permeability,
(ii1) isotropic poroelastic medium with isotropic permeability,
(iv) anisotropic poroelastic medium without dissipation (i.e., d = 0),
(v) isotropic poroelastic medium without dissipation (i.e., d = 0).

In addition to the above, the propagation regimes for various anisotropic symmetries (both elastic and
hydraulic) can, also, be deduced. The reduced propagation regime for medium (iv) is verified with that in

Sharma (2004). The propagation in medium (v) represents the standard Biot’s theory and is verified as
follows:

E = (O/R)N; Z = agl + (an — ags)N'N; ¢ = (an + 2a¢ + r11 — 2r12Q/R)/go;
ey = (a1 — Q*/R?) /g0 + ass{2(an +riy — 2r2Q/R) + ags }/g0;
3 = 2a¢(ar1 — O°/R?) /8 + agg(an + rii — 2rQ/R)/g5;  cs = agg(an — O°/R*) /g;.

Using these relations, the biquadratic equation (10) reduces to

{h* = (a1 + iy — 2r20/R)h/go + (a1 — O*/R?) /o }(h — ags /o)’ = 0 (14)
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and its roots are given by

hy = {(an +rn— 27’12Q/R) + \/(fm +rn— 2’”12Q/R)2 - 4(011 - QZ/Rz}/(ZgO)»

hy = {(a“ 11— 2r20/R) =\ (an + 1 — 2r120/R)” — 4(an, — Qz/Rz}/(zgo), (13)
hy = hy = a66/g0~

Here, hy, h, represent Py, P, waves, respectively, and identical roots 43 and k4 represent the only shear wave
in isotropic medium, gy = 1| — r},. The wave velocities v; = \/Rh;/p,, (j = 1, 2, 3), are the same as defined
in Biot’s theory.

Propagation regimes (i) and (iii) can also be obtained by generalizing the non-dissipative regimes (iv) and
(v), respectively. It is done with the transformations of dynamical constants, given by

ry — (711+ldd)/(1+ldd), ryp — (Vlz—ldd>/(1+ldd>, and l’l—>h(1+ldd)

But, no generalization of reduced cases can yield the propagation regimes of anisotropic permeability.

5. Numerical computation and discussion

The analytical expressions derived in previous sections represent the most general mathematical model
for wave propagation in a saturated poroelastic solid. These expressions can be used to compute the effects
of (a) elastic anisotropy (different symmetries) of poroelastic solid, (b) viscosity of pore fluid, (¢) hydraulic
(permeability) anisotropy of different symmetries, (d) size and shape of pores, (e) porosity of saturated
porous solid, and (f) wave frequency on the phase propagation velocities and attenuation of quasi-waves in
the medium. The present numerical work is, however, restricted to study the effects of viscosity and
hydraulic anisotropy. Write the dissipation matrix d = 14y, ", where y, is normalized permeability tensor.

A dimensionless parameter 4y = %/ﬁ = (1 + r12) % is defined that decides the frequency regime of Biot’s

theory through the characteristic frequency (w.). The Poiseuille flow (v < w,.) in pores is ensured by the
value of w/w. < 0.1. This restricts the value of 4, > 10(1 + ry,) for low-frequency wave propagation re-
gime of Biot’s theory. Similarly, high-frequency regime of w/w.> 10 restricts the value of
Ag < 0.1 (1 + }"12).

Analysis of phase velocity, and attenuation in a real crystal may be a useful study. Elastic matrix (GPa)
for dolomite, an anisotropic reservoir rock, following Rasolofosaon and Zinszner (2002), is written as

Ci1 = 6553, Clp = 977, C13 = 1219, Clg = 0.182], Cis = —0.8121, Cle — 2.9422,
Cy = 5077, Crz = 1161, Crg = —0.0921, Crs = —0.50217 Crg = —0.1922,
C3z3 = 6011, C3g = —1.61217 C3s = 1782], Cip — 084227

C44 = 2351, Cy45 = 149227 C46 = —1.1721, Css = 2457, Csqg = 02621, Ce6 — 20.21.

The values (GPa) of {m, mxn,ms3, m, my3,my} = {6.5,6,5.5,0.62,,0.721,0.5Z,} and R =2 are as-
sumed to represent a general anisotropic elastic coupling between fluid and solid constituents of porous
aggregate. The above elastic matrices with value of Z; = Z, = 1 define the triclinic system of anisotropy.
The values Z; = 0,7, = 1 represent the monoclinic symmetry and the values Z; = Z, = 0 represent the
orthorhombic symmetry. Dynamical constants are derived for 23% porosity, in a solid of density 2.423 g/cc
and containing a fluid of density 0.98 g/cc. These are found to be, approximately, p,; = 1.77 glcc;
p1, = —0.01 gf/cc; py, = 0.235 g/ee. The symmetric tensor of anisotropic permeability for dolomite is given
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Fig. 1. Variations of phase propagation velocities (¥;) with the phase direction (0, ¢), in non-dissipative dolomite (anisotropic poro-
elastic medium); all angles are in degrees.

by, x, = {0.96, —0.08, —0.06; —0.08,0.72,0.01; —0.06,0.01,0.73}. Identity matrix for y, represents the iso-
tropic permeability. For the anisotropies with symmetries, the matrix y, can be defined similar to the matrix
of {m;;}. Using the above numerical values, the variations of phase propagation velocities (};), attenuation
quality factors (Qj‘l) with the phase direction are computed. The phase direction (0, ¢) varies from (0, 0) to
(90°, 90°).

Fig. 1 exhibits the variations of velocities with the phase direction in the anisotropic poroelastic (APE)
solid saturated with a non-viscous fluid (i.e., 49 = 0). These plots serve as a platform to study the effects of
fluid viscosity and solid permeability on wave propagation. It may be noted that attenuation is not there in
such a medium.

The propagation velocities (V;) are plotted in Figs. 2 and 3, for the different frequency regimes of Biot’s
theory. Medium of propagation, here, is anisotropic porous solid saturated by a viscous fluid. Poiseuille
flow in pores is ensured by the value of 4, = 20. This represents the low-frequency regime (LF) of Biot’s
theory. The high-frequency regime (HF) is represented by the value of 4y = 0.05. Fig. 2 exhibits the velocity
variations for isotropic permeability whereas, permeability with general anisotropy is considered for plots
in Fig. 3. Comparison of these figures with Fig. 1 measures the effect of viscosity on velocities of propa-
gation. The column-wise comparison of plots in these figures measure the effect of frequency regimes. The
second and third columns of plots in these figures differs on the value of k, which represents the viscosity of
the interstitial fluid and size of pores. It is observed that presence of viscosity in the pore fluid slows down
the propagation. Also note that slower the wave larger the effect. This effect of viscosity disappears a lot in
high-frequency regime. As compared to viscosity, the effect of hydraulic anisotropy is very small in the all
frequency regimes.

The attenuation variations of quasi-waves corresponding to the velocities in Figs. 2 and 3 are exhibited
in Figs. 4 and 5, respectively. It may be noted that attenuation is largest for qS2-waves and negligible for
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Fig. 2. Variations of phase velocities (¥;) of quasi-waves with the phase direction (0, ¢), in dissipative dolomite with isotropic per-
meability; all angles are in degrees.
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Fig. 3. Variations of phase velocities (V}) of quasi-waves with the phase direction (0, ¢), in dissipative dolomite with anisotropic
permeability; all angles are in degrees.
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Fig. 4. Variations of quality factors (Q;) of quasi-waves with the phase direction (0, ¢), in dissipative dolomite with isotropic per-
meability; all angles are in degrees.
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Fig. 5. Variations of quality factors (Q;) of quasi-waves with the phase direction (0, ¢p), in dissipative dolomite with anisotropic
permeability; all angles are in degrees.

gP1-waves. On the increase of frequency to abandon Poiseuille flow, the attenuation of qS2-waves reduces
drastically whereas it increases slightly for the remaining three quasi-waves. Increase of x also increases the
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attenuation. In the high-frequency regime, the presence of hydraulic anisotropy shows a significant increase
in the attenuations.

From the numerical results it is observed that anisotropic wave propagation is possible even in the
poroelastic medium with isotropic solid matrix. It is possible, in high-frequency regime, when solid is
saturated by viscous fluid with anisotropic permeability controlling its flow. Four quasi-waves do propa-
gate in such a medium but the directional variations of phase velocities are very small. For low-frequency
propagation (i.e., Poiseuille flow in pores), such an anisotropy is just negligible.

6. Conclusions

The above discussion of numerical results is made for a particular model. It may not qualify for gen-
eralization but conclusions drawn from it can certainly help in improving the mathematical models of wave
propagation in APE solids. Discussion in the previous section may be interpreted for the following con-
clusions:

(a) Variations of phase propagation velocities with phase direction

1. Presence of viscosity in the pore fluid reduces the velocities of all the quasi-waves to a large extent
(compare Figs. 2 and 3 with 1). Waves propagating with velocity ¥, slows down nearly four times.
In general, faster the wave smaller the effect.

2. In the low-frequency regime (Poiseuille flow) hydraulic anisotropy have a very little decreasing ef-
fect on the V; and almost no effect on other three quasi-waves.

3. The frequency increase (x = 0.1 case) do increase the velocities of all the waves to their correspond-
ing velocities of non-dissipative case (Fig. 1). This implies that the effect of viscosity is nullified by
the smaller size of pores which denies the motion of pore fluid relative to the solid. The presence of
hydraulic anisotropy, in this case, slows down the waves a little bit.

4. The increase of k (x = 10 case, i.e., wider pores and/or smaller viscosity) increases the velocities of
slower waves. In this case hydraulic anisotropy also increases these velocities but only by small
amount of 2-5%.

5. The hydraulic anisotropy may lead to anisotropic propagation in an isotropic porous solid. Such an
anisotropic propagation is small and restricted to high-frequency regime.

(b) Variations of attenuation with phase direction

6. Presence of viscosity in the pore fluid introduces the attenuation in the amplitudes of the quasi
waves (Fig. 3). Attenuation is much large for the quasi-wave propagating at the slowest velocity V.

7. 1In the low-frequency regime (i.e., Poiseuille flow) hydraulic anisotropy reduces the attenuation of
faster waves to some extent (Figs. 4 and 5). Attenuation of fastest wave is negligible.

8. In the high-frequency regime the attenuations of three of the four quasi-waves, are larger to that in
low-frequency regime. The attenuation of slowest wave (i.e., 100/Q.), however, decreases up to 30
times in high-frequency. Hydraulic anisotropy do increase the attenuation considerably.

9. Decrease of viscosity and/or increase of pore size in the high-frequency regime (i.e., change of x
from 0.1 to 10) increase the attenuation of all the quasi-waves. Increase in attenuation due to
the hydraulic anisotropy is much larger as compared to the effect on velocities.

This piece of work studies the wave propagation in a realistic medium keeping in mind the physical
properties of reservoir rocks. The theoretical and calculation schemes are used to their utmost capabilities
to derive a most general mathematical model for wave propagation in a general anisotropic poroelastic
solid. The prospecting seismologists and researchers in this field would prefer to use this model, for the
interpretation of their complex data. The work presented can, further, be used to study the polarizations,



M.D. Sharma | International Journal of Solids and Structures 41 (2004) 4587-4597 4597

surface waves and scattering in a general anisotropic poroelastic medium. The study of anisotropic
poroelasticity may also be important for understanding the mechanical behaviour of composite materials
leading to enormous applications in non-destructive testing/evaluation studies (Braga, 1990; Buden and
Datta, 1990; Chai and Wu, 1994; Wu and Wu, 2000).

References

Biot, M.A., 1955. Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26, 182-185.

Biot, M.A., 1956. The theory of propagation of elastic waves in a fluid-saturated porous solid, I. Low-frequency range, II. Higher
frequency range. J. Acoust. Soc. Am. 28, 168-191.

Braga, A.M.B., 1990. Wave Propagation in Anisotropic Layered Composites. Ph.D. Dissertation, Stanford University, Stanford, CA.

Buden, M., Datta, S.K., 1990. Rayleigh and love waves in cladded anisotropic media. ASME, J. Appl. Mech. 57, 398-403.

Chai, J.-F., Wu, T.-T., 1994. Determinations of anisotropic elastic constants using laser-generated surface waves. J. Acoust. Soc. Am.
95, 3232-3241.

Corrigan, D., 1989. Anisotropy in exploration seismology: experimental evidence. Paper presented at Mass Institute of Technology,
Cambridge.

Crampin, S., 1981. A review of wave motion in anisotropic and cracked elastic media. Wave Motion 3, 343-391.

Crampin, S., 1987. Geological and industrial implications of extensive-dilatancy anisotropy. Nature 328, 491-496.

Crampin, S., 1994. The fracture criticality of crystal rocks. Geophys. J. Int. 118, 428-438.

Helbig, K., 1984. Transverse isotropy in exploration seismics. Geophys. J. R. Astro. Soc. 76, 79-88.

Kerner, C., Dyer, B., Worthington, M., 1989. Wave propagation in a vertical transversely isotropic medium: field experiment and
model study. Geophys. J. R. Astro. Soc. 97, 295-309.

Leary, P.C., Henyey, T.L., 1985. Anisotropy and fracture zones about a geothermal well from P-wave velocity profiles. Geophysics 50,
25-36.

Rasolofosaon, P.N.J., Zinszner, B.E., 2002. Comparison between permeability anisotropy and elasticity anisotropy of reservoir rocks.
Geophysics 67, 230-240.

Sharma, M.D., 2002. Group velocity along general direction in a general anisotropic medium. Int. J. Solids Struct. 39, 3277-3288.

Sharma, M.D., 2004. 3-D wave propagation in a general anisotropic poroelastic medium: phase velocity, group velocity and
polarization. Geophys. J. Int. 156, 329-344.

Wu, T.-T., Wu, T.-Y., 2000. Surface waves in coated anisotropic medium loaded with viscous fluid. ASME, J. Appl. Mech. 67, 262—
266.



	Wave propagation in a general anisotropic poroelastic medium with anisotropic permeability: phase velocity and attenuation
	Introduction
	Anisotropic poroelasticity
	Christoffel equation
	Reduced cases
	Numerical computation and discussion
	Conclusions
	References


