
International Journal of Solids and Structures 41 (2004) 4587–4597

www.elsevier.com/locate/ijsolstr
Wave propagation in a general anisotropic poroelastic
medium with anisotropic permeability: phase velocity

and attenuation

M.D. Sharma *

Department of Mathematics, Kurukshetra University, D-66, KU Campus, Kurukshetra 136 119, India

Received 20 August 2003; received in revised form 26 February 2004

Available online 9 April 2004

Abstract

Wave propagation is studied to characterize an oil reservoir provided reservoir rocks could be considered a general

anisotropic poroelastic solid saturated by a viscous fluid with flow controlled by the anisotropic permeability of the

porous solid. Biot’s theory is used to derive a modified Christoffel equation for the propagation of plane harmonic

waves in such a medium. This equation is solved further to get a biquadratic equation whose roots represent the

complex velocities of four attenuating quasi-waves in such a medium. These complex velocities define the phase

velocities of propagation and quality factors of attenuation of all the quasi-waves propagating along a given phase

direction in three-dimensional space. The variations of phase velocities and attenuation factors with the direction of

phase propagation are computed, for a realistic numerical model. Propagation regimes for anisotropic/isotropic

poroelastic media with isotropic/anisotropic permeability are obtained as reduced cases.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The study of mechanical behaviour of porous media is of special importance in the seismic exploration,
for the closer description of physical phenomena around the oil reservoirs. A reservoir is, no doubt, a fluid-

saturated porous solid medium pervaded by aligned cracks. In the presence of aligned cracks, an elastic

medium behaves anisotropic to wave propagation (Crampin, 1981). In general, the seismic anisotropy is

caused by the lithological and crystal alignments, stress induced effects, aligned cracks and fluid-filled pores.

The absence of point symmetry of pores may cause the anisotropy of arbitrary symmetry. Inherent cracks

(particularly microcracks) and pores in a crystal rock are modified and aligned by the changes in stress-

field of the rock and pore fluid pressure. The distribution of stress-aligned fluid-filled microcracks and
* Tel.: +91-174-4238283.

E-mail address: mohan_here@rediffmail.com (M.D. Sharma).

0020-7683/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijsolstr.2004.02.066

mail to: mohan_here@rediffmail.com


4588 M.D. Sharma / International Journal of Solids and Structures 41 (2004) 4587–4597
preferentially oriented pore space is known as extensive dilatancy anisotropy (EDA) and has been recog-

nised (Crampin, 1994) throughout much of the crust. Crampin (1987) discussed the geological and

industrial implications of EDA. In exploration studies (Helbig, 1984; Leary and Henyey, 1985; Kerner

et al., 1989; Corrigan, 1989; and many others), the velocity anisotropy measured from travel times has
suggested the presence of significant anisotropy in sedimentary basins.

The porosity and permeability are two fundamental parameters which are economically important in oil

production. Whereas, porosity is the most important geometrical property, the permeability is an equally

important physical property of a porous medium. Permeability measures the ability of a porous medium to

conduct fluid flow in its pores. Reservoir rocks can exhibit a strong permeability anisotropy. There may or

may not be some correlation between elastic anisotropy and permeability (or hydraulic) anisotropy

(Rasolofosaon and Zinszner, 2002). To infer hydraulic transport properties of reservoir rocks from seismic

data is a difficult but important aspect of exploration studies.
This paper provides a mathematical model to study the phase propagation velocities and attenuations of

four quasi-waves in reservoir rocks. Their variations with phase direction are studied numerically.
2. Anisotropic poroelasticity

Following Biot (1955, 1956), the governing equations for a fluid-saturated porous media, in the absence
of body forces, are
rij;j ¼ q11€ui þ q12
€Ui þ bijð _uj � _UjÞ;

r;i ¼ q12€ui þ q22
€Ui � bijð _uj � _UjÞ:

ð1Þ
In these equations, ui and Ui are the components of the average displacements for the solid and fluid phases,

respectively. The dot notation is used to represent differentiation with respect to time. Indices can take the

values 1–3. Summation convention is valid for repeated indices. The comma (,) before an index represents
partial space differentiation. q11; q12 and q22 are the dynamical constants depending upon the porosity of

solid, fluid–solid coupling and densities of solid particles and interstitial fluid. Flow-resistance symmetric

matrix fbijg steers the effects of frequency (x), fluid viscosity (l), solid–matrix permeability (v) and porosity

(f ) on the wave propagation. Following Biot (1956),
b ¼ l
v0

f 2fv�1
a g; ð2Þ
where, v0 is norm of permeability tensor. va is a symmetric matrix of order 3 and represents normalized

anisotropic permeability tensor. This expression of b is valid, only, for the low-frequency range, where the

flow in the pores is of Poiseuille type. For higher frequencies, a correction factor is applied to the viscosity,

l, replacing it by lF ðjÞ. With �a denoting the linear dimension of pores, the j ¼ �a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xqf =l

q
. F ðjÞ, a complex

function of frequency x, is, then, defined as follows:

When j � 1 (i.e., highly viscous fluid and/or smaller pores),
F ðjÞ ¼ ½1þ j4=1152þ oðj6Þ
 þ i½j2ð1� j4=1440Þ=24þ oðj8Þ


and, when j � 1 (i.e., low-viscosity fluid and/or wider pores),
F ðjÞ ¼ j
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For an anisotropic porous material, the constitutive equations for stresses in the solid phase (i.e. rij) and
fluid (i.e. r) are
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rij ¼ cijkluk;l þ mijUk;k;

r ¼ mijui;j þ RUk;k:
ð3Þ
The coefficients cijkl;mij and R are the material constants of a linear porous material. The assumptions

cijkl ¼ cklij ¼ cjikl;mij ¼ mji and strain-energy considerations reduce the number of these material constants

to be at the most 28, for general anisotropy.

To seek the harmonic solution of (1), for the propagation of plane waves, write
uj ¼ Sj expfixðpkxk � tÞg;
Uj ¼ Fj expfixðpkxk � tÞg ðj ¼ 1; 2; 3Þ;

ð4Þ
where, x is angular frequency and ðp1; p2; p3Þ is slowness vector. In terms of phase velocity v, the slowness is
fp1; p2; p3g ¼ fn1; n2; n3g=v, where nj denotes the components of a unit vector normal to wave surface.

Define row matrix N ¼ ðn1; n2; n3Þ to represent the direction of phase propagation. Substituting (2) in (1)

and, then, using (3), yields a system of six homogeneous equations in S1; S2; S3; F1; F2; F3. Non-trivial
solution of this system of equations defines a modified Christoffel equation for the wave propagation in an

anisotropic poroelastic medium. Eliminating Fj ðj ¼ 1; 2; 3Þ, the Christoffel equation is reduced to a system

of three homogeneous equations, given by
WijSj ¼ 0 ði ¼ 1; 2; 3Þ: ð5Þ
The Wij are elements of a square matrix of order 3, which is defined as
W ¼ X1

d0

�
� r11I� d

�
hþ Zþ X2

�
� X1

d1
d0

�
1

d0
þ ½X3 � ðX2 � X1d1=d0Þd1=d0
hþ X4

hðd0hþ d1Þ
; ð6Þ
where, I is identity matrix of order 3 and dissipation matrix d ¼ i b
xq22

. The variable h ¼ q22v
2=R and

r1j ¼ q1j=q22 ðj ¼ 1; 2Þ. Other variables, in (6), are expressed as follows:
d0 ¼ detðdþ IÞ;

d1 ¼ d212n
2
3 þ 2d12ðd33 þ 1Þn1n2 � ðd11 þ 1Þðd22 þ 1Þn23 � 2d12d23n1n3 þ d213n

2
2 þ 2d13ðd22 þ 1Þn1n3

� ðd11 þ 1Þðd33 þ 1Þn22 � 2d13d23n1n2 þ d223n
2
1 þ 2d23ðd11 þ 1Þn2n3 � ðd22 þ 1Þðd33 þ 1Þn21 � 2d12d13n2n3:

X1 ¼ r212U � r12ðdU þ UdÞ þ dUd;
X2 ¼ r212C � r12ðdC þ Cdþ E0NU þ UN0EÞ þ ðdCdþ E0NUdþ dUN0EÞ;
X3 ¼ �r12ðE0NC þ CN0EÞ þ ðdCN0Eþ E0NCdþ E0NUN0EÞ;
X4 ¼ E0NCN0E;

ð7Þ
where, matrix U ¼ adjðdþ IÞ and elements of symmetric matrix C are defined as
C11 ¼ 2d23n2n3 � ðd22 þ 1Þn23 � ðd33 þ 1Þn22 and C23 ¼ d23n21 � ðd11 þ 1Þn2n3 � d21n3n1 � d31n2n1:
The other elements of C are obtained in cyclic order. The matrix Z in (6) is defined as follows:

Consider a general anisotropic poroelastic medium with elastic constants cijkl of the solid matrix rep-

resented by two-suffix notation, cij. Define, following Sharma (2002),
a ¼ NA1N
0; b ¼ NA2N

0; c ¼ NA3N
0;

d ¼ NA4N
0; g ¼ NA5N

0; f ¼ NA6N
0;

ð8Þ
where N0 denotes the transpose of row matrix N. A1–A6 are square matrices of order 3. For general

anisotropy, these are defined as follows:
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A1 ¼ fa11; a16; a15; a16; a66; a56; a15; a56; a55g; A2 ¼ fa66; a26; a46; a26; a22; a24; a46; a24; a44g;

A3 ¼ fa55; a45; a35; a45; a44; a34; a35; a34; a33g; A4 ¼ fa16; a12; a14; a66; a26; a46; a56; a25; a45g;

A5 ¼ fa15; a14; a13; a56; a46; a36; a55; a45; a35g; A6 ¼ fa56; a46; a36; a25; a24; a23; a45; a44; a34g;

ð9Þ
where aij ¼ cij=R and symmetric, square matrix
Z ¼ fa; d; g; d; b; f; g; f; cg: ð10Þ
The row matrix E, in (7), is given by Ei ¼ 1
R njmij (i ¼ 1, 2, 3). The system of equation (5) is possible for all

values of h other than 0 and �d1=d0.
3. Christoffel equation

For the non-trivial solution of the system of equation (5), the determinant of matrix W must vanish. This

gives a biquadratic equation in h (¼ q22v
2=R), given by
h4 � c1h3 þ c2h2 � c3hþ c4 ¼ 0: ð11Þ
The coefficients c’s in (11) are complex and this implies that four roots of this equation may be complex.

Therefore, the four waves propagating in such a medium are attenuating waves. The same directions of

propagation and attenuation vectors of these waves, make them homogeneous waves. Let hj (j ¼ 1, 2, 3, 4),

denotes the roots of this equation. The complex phase velocities of the four waves, given by vj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRhj=q22Þ

p
(j ¼ 1, 2, 3, 4), will be varying with the direction of phase propagation. These waves are called

quasi-waves because polarizations may not be along the dynamic axes. Analogous to the propagation in an

isotropic poroelastic medium (Section 4), these waves, represented by j ¼ 1, 2, 3, 4, may be called the

qP1-; qP2-; qS1- and qS2-waves, respectively. The complex velocity of a quasi-wave j, i.e., vj ¼ vR þ ivI ,
defines the phase propagation velocity Vj ¼ ðv2R þ v2I Þ=vR and attenuation quality factor Q�1

j ¼ �2vI=vR for

the corresponding wave. The coefficients in Eq. (11) are expressed as follows:
c1 ¼ �ðd0T2 þ d1T1Þ=ðd0T1Þ; c2 ¼ ðT5 þ d0T3 þ d1T2Þ=ðd0T1Þ;
c3 ¼ �ðT6 þ d0T4 þ d1T3Þ=ðd0T1Þ; c4 ¼ ðT7 þ d1T4Þ=ðd0T1Þ;

ð12Þ
where
T1 ¼ ½AAA
; T2 ¼ ½AAB
 þ ½ABA
 þ ½BAA
; T3 ¼ ½ABB
 þ ½BAB
 þ ½BBA
; T4 ¼ ½BBB
;

T5 ¼ ½AAC
 þ ½ACA
 þ ½CAA
;

T6 ¼ ½AAD
 þ ½ABC
 þ ½ACB
 þ ½ADA
 þ ½BAC
 þ ½BCA
 þ ½CAB
 þ ½CBA
 þ ½DAA
;

T7 ¼ ½ABD
 þ ½ADB
 þ ½BAD
 þ ½BBC
 þ ½BCB
 þ ½BDA
 þ ½CBB
 þ ½DAB
 þ ½DBA
:
A;B;C;D, the square matrices of order 3, are defined by
A ¼ X1

d0
� r11I� d; B ¼ X2

�
� X1

d1
d0

�
1

d0
þ Z;

C ¼ X3 � X2

�
� X1

d1
d0

�
d1
d0

; D ¼ X4:
The symbol ½ABC
 defines the determinant of a matrix fA11;A12;A13; B21;B22;B23; C31;C32;C33g.
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The four roots of Eq. (11) are written as
h1 ¼ 0:5ð�G� Lþ D1Þ; h2 ¼ 0:5ð�G� L� D1Þ;

h3 ¼ 0:5ð�Gþ Lþ D2Þ; h4 ¼ 0:5ð�Gþ L� D2Þ;
ð13Þ
where
D1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGþ LÞ2 � 4ðH þMÞ

q
; D2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðG� LÞ2 � 4ðH �MÞ

q
; G ¼ �0:5c1; M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2 � c4

p
;

L ¼ ð0:5c3 þ GHÞ=M ; L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 � c2 þ 2H

p
if M ¼ 0


 �
and H is a root of the cubic equation
8H 3 � 4c2H 2 þ 2ðc1c3 � 4c4ÞH þ c4ð4c2 � c21Þ � c23 ¼ 0:
4. Reduced cases

Isotropic permeability is represented by dij ¼ dddij. It, further, yields d0 ¼ ðdd þ 1Þ3; d1 ¼ �ðdd þ 1Þ2;
U ¼ ðdd þ 1Þ�2

I;C ¼ ðdd þ 1ÞðN0N� IÞ. Vanishing of D yields the reduced terms T6¼½ABC
þ½ACB

þ½BAC
þ½BCA
þ½CAB
þ½CBA
, and T7¼½BBC
þ½BCB
þ½CBB
. The elastic isotropy of porous solid is

represented four elastic constants a11;a66;Q;R and mij¼Qdij. The matrix Z, given by (10), reduces to

Z¼a66Iþða11�a66ÞN0N. The corresponding changes in A;B;C;D modify the coefficients cj and then the
roots hj.

The above given reductions enable to study the propagation regimes in the following media:

(i) anisotropic poroelastic medium with isotropic permeability,

(ii) isotropic poroelastic medium with anisotropic permeability,

(iii) isotropic poroelastic medium with isotropic permeability,

(iv) anisotropic poroelastic medium without dissipation (i.e., d ¼ 0),

(v) isotropic poroelastic medium without dissipation (i.e., d ¼ 0).

In addition to the above, the propagation regimes for various anisotropic symmetries (both elastic and

hydraulic) can, also, be deduced. The reduced propagation regime for medium (iv) is verified with that in

Sharma (2004). The propagation in medium (v) represents the standard Biot’s theory and is verified as

follows:
E ¼ ðQ=RÞN; Z ¼ a66Iþ ða11 � a66ÞN0N; c1 ¼ ða11 þ 2a66 þ r11 � 2r12Q=RÞ=g0;

c2 ¼ ða11 � Q2=R2Þ=g0 þ a66f2ða11 þ r11 � 2r12Q=RÞ þ a66g=g20;

c3 ¼ 2a66ða11 � Q2=R2Þ=g20 þ a266ða11 þ r11 � 2r12Q=RÞ=g30; c4 ¼ a266ða11 � Q2=R2Þ=g30:
Using these relations, the biquadratic equation (10) reduces to
fh2 � ða11 þ r11 � 2r12Q=RÞh=g0 þ ða11 � Q2=R2Þ=g0gðh� a66=g0Þ2 ¼ 0 ð14Þ
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and its roots are given by
h1 ¼ ða11
�

þ r11 � 2r12Q=RÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða11 þ r11 � 2r12Q=RÞ2 � 4ða11 � Q2=R2

q 
�
ð2g0Þ;

h2 ¼ ða11
�

þ r11 � 2r12Q=RÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða11 þ r11 � 2r12Q=RÞ2 � 4ða11 � Q2=R2

q 
�
ð2g0Þ;

h3 ¼ h4 ¼ a66=g0:

ð15Þ
Here, h1, h2 represent Pf , Ps waves, respectively, and identical roots h3 and h4 represent the only shear wave

in isotropic medium, g0 ¼ r11 � r212. The wave velocities vj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rhj=q22

p
(j ¼ 1, 2, 3), are the same as defined

in Biot’s theory.

Propagation regimes (i) and (iii) can also be obtained by generalizing the non-dissipative regimes (iv) and
(v), respectively. It is done with the transformations of dynamical constants, given by
r11 ! ðr11 þ iddÞ=ð1þ iddÞ; r12 ! ðr12 � iddÞ=ð1þ iddÞ; and h! hð1þ iddÞ:

But, no generalization of reduced cases can yield the propagation regimes of anisotropic permeability.
5. Numerical computation and discussion

The analytical expressions derived in previous sections represent the most general mathematical model

for wave propagation in a saturated poroelastic solid. These expressions can be used to compute the effects

of (a) elastic anisotropy (different symmetries) of poroelastic solid, (b) viscosity of pore fluid, (c) hydraulic
(permeability) anisotropy of different symmetries, (d) size and shape of pores, (e) porosity of saturated

porous solid, and (f) wave frequency on the phase propagation velocities and attenuation of quasi-waves in

the medium. The present numerical work is, however, restricted to study the effects of viscosity and

hydraulic anisotropy. Write the dissipation matrix d ¼ iD0v�1
a , where va is normalized permeability tensor.

A dimensionless parameter D0 ¼
fqf
q22
=x

xc
¼ ð1þ r12Þ xc

x is defined that decides the frequency regime of Biot’s

theory through the characteristic frequency (xc). The Poiseuille flow (x � xc) in pores is ensured by the

value of x=xc < 0:1. This restricts the value of D0 > 10ð1þ r12Þ for low-frequency wave propagation re-

gime of Biot’s theory. Similarly, high-frequency regime of x=xc > 10 restricts the value of

D0 < 0:1 ð1þ r12Þ.
Analysis of phase velocity, and attenuation in a real crystal may be a useful study. Elastic matrix (GPa)

for dolomite, an anisotropic reservoir rock, following Rasolofosaon and Zinszner (2002), is written as
c11 ¼ 65:53; c12 ¼ 9:77; c13 ¼ 12:19; c14 ¼ 0:18Z1; c15 ¼ �0:81Z1; c16 ¼ 2:94Z2;

c22 ¼ 50:77; c23 ¼ 11:61; c24 ¼ �0:09Z1; c25 ¼ �0:50Z1; c26 ¼ �0:19Z2;

c33 ¼ 60:11; c34 ¼ �1:61Z1; c35 ¼ 1:78Z1; c36 ¼ 0:84Z2;

c44 ¼ 23:51; c45 ¼ 1:49Z2; c46 ¼ �1:17Z1; c55 ¼ 24:57; c56 ¼ 0:26Z1; c66 ¼ 20:21:
The values (GPa) of fm11;m22;m33;m12;m13;m23g ¼ f6:5; 6; 5:5; 0:6Z2; 0:7Z1; 0:5Z1g and R ¼ 2 are as-

sumed to represent a general anisotropic elastic coupling between fluid and solid constituents of porous

aggregate. The above elastic matrices with value of Z1 ¼ Z2 ¼ 1 define the triclinic system of anisotropy.

The values Z1 ¼ 0; Z2 ¼ 1 represent the monoclinic symmetry and the values Z1 ¼ Z2 ¼ 0 represent the

orthorhombic symmetry. Dynamical constants are derived for 23% porosity, in a solid of density 2.423 g/cc
and containing a fluid of density 0.98 g/cc. These are found to be, approximately, q11 ¼ 1:77 g/cc;

q12 ¼ �0:01 g/cc; q22 ¼ 0:235 g/cc. The symmetric tensor of anisotropic permeability for dolomite is given



Fig. 1. Variations of phase propagation velocities (Vj) with the phase direction (h;/), in non-dissipative dolomite (anisotropic poro-

elastic medium); all angles are in degrees.
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by, va ¼ f0:96;�0:08;�0:06;�0:08; 0:72; 0:01;�0:06; 0:01; 0:73g. Identity matrix for va represents the iso-

tropic permeability. For the anisotropies with symmetries, the matrix va can be defined similar to the matrix

of fmijg. Using the above numerical values, the variations of phase propagation velocities (Vj), attenuation
quality factors (Q�1

j ) with the phase direction are computed. The phase direction (h;/) varies from (0; 0) to
(90�, 90�).

Fig. 1 exhibits the variations of velocities with the phase direction in the anisotropic poroelastic (APE)

solid saturated with a non-viscous fluid (i.e., D0 ¼ 0). These plots serve as a platform to study the effects of

fluid viscosity and solid permeability on wave propagation. It may be noted that attenuation is not there in

such a medium.

The propagation velocities (Vj) are plotted in Figs. 2 and 3, for the different frequency regimes of Biot’s

theory. Medium of propagation, here, is anisotropic porous solid saturated by a viscous fluid. Poiseuille
flow in pores is ensured by the value of D0 ¼ 20. This represents the low-frequency regime (LF) of Biot’s

theory. The high-frequency regime (HF) is represented by the value of D0 ¼ 0:05. Fig. 2 exhibits the velocity
variations for isotropic permeability whereas, permeability with general anisotropy is considered for plots

in Fig. 3. Comparison of these figures with Fig. 1 measures the effect of viscosity on velocities of propa-

gation. The column-wise comparison of plots in these figures measure the effect of frequency regimes. The

second and third columns of plots in these figures differs on the value of j, which represents the viscosity of

the interstitial fluid and size of pores. It is observed that presence of viscosity in the pore fluid slows down

the propagation. Also note that slower the wave larger the effect. This effect of viscosity disappears a lot in
high-frequency regime. As compared to viscosity, the effect of hydraulic anisotropy is very small in the all

frequency regimes.

The attenuation variations of quasi-waves corresponding to the velocities in Figs. 2 and 3 are exhibited

in Figs. 4 and 5, respectively. It may be noted that attenuation is largest for qS2-waves and negligible for



Fig. 2. Variations of phase velocities (Vj) of quasi-waves with the phase direction (h;/), in dissipative dolomite with isotropic per-

meability; all angles are in degrees.

Fig. 3. Variations of phase velocities (Vj) of quasi-waves with the phase direction (h;/), in dissipative dolomite with anisotropic

permeability; all angles are in degrees.
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Fig. 4. Variations of quality factors (Qj) of quasi-waves with the phase direction (h;/), in dissipative dolomite with isotropic per-

meability; all angles are in degrees.

Fig. 5. Variations of quality factors (Qj) of quasi-waves with the phase direction (h;/), in dissipative dolomite with anisotropic

permeability; all angles are in degrees.
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qP1-waves. On the increase of frequency to abandon Poiseuille flow, the attenuation of qS2-waves reduces

drastically whereas it increases slightly for the remaining three quasi-waves. Increase of j also increases the
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attenuation. In the high-frequency regime, the presence of hydraulic anisotropy shows a significant increase

in the attenuations.

From the numerical results it is observed that anisotropic wave propagation is possible even in the

poroelastic medium with isotropic solid matrix. It is possible, in high-frequency regime, when solid is
saturated by viscous fluid with anisotropic permeability controlling its flow. Four quasi-waves do propa-

gate in such a medium but the directional variations of phase velocities are very small. For low-frequency

propagation (i.e., Poiseuille flow in pores), such an anisotropy is just negligible.
6. Conclusions

The above discussion of numerical results is made for a particular model. It may not qualify for gen-

eralization but conclusions drawn from it can certainly help in improving the mathematical models of wave

propagation in APE solids. Discussion in the previous section may be interpreted for the following con-

clusions:

(a) Variations of phase propagation velocities with phase direction

1. Presence of viscosity in the pore fluid reduces the velocities of all the quasi-waves to a large extent

(compare Figs. 2 and 3 with 1). Waves propagating with velocity V4 slows down nearly four times.

In general, faster the wave smaller the effect.

2. In the low-frequency regime (Poiseuille flow) hydraulic anisotropy have a very little decreasing ef-

fect on the V4 and almost no effect on other three quasi-waves.

3. The frequency increase (j ¼ 0:1 case) do increase the velocities of all the waves to their correspond-
ing velocities of non-dissipative case (Fig. 1). This implies that the effect of viscosity is nullified by

the smaller size of pores which denies the motion of pore fluid relative to the solid. The presence of

hydraulic anisotropy, in this case, slows down the waves a little bit.

4. The increase of j (j ¼ 10 case, i.e., wider pores and/or smaller viscosity) increases the velocities of

slower waves. In this case hydraulic anisotropy also increases these velocities but only by small

amount of 2–5%.

5. The hydraulic anisotropy may lead to anisotropic propagation in an isotropic porous solid. Such an

anisotropic propagation is small and restricted to high-frequency regime.
(b) Variations of attenuation with phase direction

6. Presence of viscosity in the pore fluid introduces the attenuation in the amplitudes of the quasi

waves (Fig. 3). Attenuation is much large for the quasi-wave propagating at the slowest velocity V4.
7. In the low-frequency regime (i.e., Poiseuille flow) hydraulic anisotropy reduces the attenuation of

faster waves to some extent (Figs. 4 and 5). Attenuation of fastest wave is negligible.

8. In the high-frequency regime the attenuations of three of the four quasi-waves, are larger to that in

low-frequency regime. The attenuation of slowest wave (i.e., 100=Q4), however, decreases up to 30

times in high-frequency. Hydraulic anisotropy do increase the attenuation considerably.
9. Decrease of viscosity and/or increase of pore size in the high-frequency regime (i.e., change of j

from 0.1 to 10) increase the attenuation of all the quasi-waves. Increase in attenuation due to

the hydraulic anisotropy is much larger as compared to the effect on velocities.

This piece of work studies the wave propagation in a realistic medium keeping in mind the physical

properties of reservoir rocks. The theoretical and calculation schemes are used to their utmost capabilities

to derive a most general mathematical model for wave propagation in a general anisotropic poroelastic

solid. The prospecting seismologists and researchers in this field would prefer to use this model, for the
interpretation of their complex data. The work presented can, further, be used to study the polarizations,
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surface waves and scattering in a general anisotropic poroelastic medium. The study of anisotropic

poroelasticity may also be important for understanding the mechanical behaviour of composite materials

leading to enormous applications in non-destructive testing/evaluation studies (Braga, 1990; Buden and

Datta, 1990; Chai and Wu, 1994; Wu and Wu, 2000).
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